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ABSTRACT 

 

This paper discusses Grey Systems Theory (GST) 

applications in wireless communications and highlights its 

potential to cognitive radio. GST consists of information 

theory concepts and practical algorithms developed to 

address situations where information is incomplete and 

affected by random uncertainties. Two GST concepts, Grey 

Relational Analysis (GRA) and Grey Model (GM) 

prediction theory are discussed. GRA provides a method to 

quantify the similarity between a reference data series and 

set of data while GM is used for modeling time series data 

and enables prediction of future values with limited data 

points and unknown probability distributions. These two 

techniques are surveyed with respect to their applications to 

wireless communications. Their application to predictive 

CR and as a similarity measure for case based reasoning 

cognitive engines is highlighted. A GRA based Automatic 

Modulation Classification (AMC) algorithm is applied to 

digital communications signals with preliminary results 

shown in simulation. 

 

 

1. INTRODUCTION 

 

Cognitive Radio (CR) is built upon the observation of 

environmental parameters.  Given the stochastic nature of 

communications and imperfect sensing capabilities, it is 

reasonable to say that the CR environment consists of 

limited data points, and poor information affected by 

random uncertainties.  In information theory, this is 

considered a „grey‟ system in the context of „white‟ 

equating to complete knowledge and „black‟ completely 

unknown. Techniques that can help „whiten‟ observed CR 

meters will be beneficial to improving decision making 

capabilities.  

 Grey System Theory (GST) is a family of algorithms 

developed specifically to address systems with the same 

characteristics as CR.   Developed in China over 20 years 

ago, GST has seen applications and success across many 

scientific fields including economics, ecology and 

transportation [1]. While founded upon information theory 

philosophy, the practical applications and empirical 

operation of GST highlight its potential to the mission of 

CR. 

 This paper surveys recent GST applications to wireless 

communications, specifically the Grey Model (GM) 

prediction theory and Grey Relational Analysis (GRA) 

algorithms.  The potential of these two techniques to CR for 

proactive/predictive functionality and similarity measures in 

case based reasoning cognitive engines is highlighted. A 

new application of GRA to AMC is detailed and 

demonstrated in simulation. 

 GRA differs from most similarity measures by 

incorporating a relational aspect between all the cases in a 

case database file whereas, in traditional distance measures 

such as Euclidian Distance, the similarity between each case 

and the current case is calculated completely independent of 

the other cases. GRA is closer to models of human memory 

where all past memories impact recollection. 

 The literature review indicates that GRA and GM have 

potential applications in CR. The proposed GRA-based 

AMC shows promising results in signal classification. It 

requires no training process and no configuration of proper 

architecture and parameters as required in other pattern 

recognition algorithms such as artificial neural network.  

 The structure of this paper is as follows: Section 2 

provides an overview of GST algorithms of GM and GRA.  

This section surveys the wireless communications 

application of GST in the literature and presents potential 

CR uses of GST.  Section 3 introduces an application of 

GRA, GRA-based AMC.  The GRA algorithm and AMC 

process flow is detailed as well as preliminary simulation 

results are presented. Section 4 summarizes and discusses 

future research directions. 

  

2. OVERVIEW OF GREY SYSTEMS THEORY 

 

In the early 1980s, Professor Deng Ju-long introduced the 

concepts of GST. The theories consist of several algorithms 

designed for studying application spaces characterized by 

limited data points and modeling information. Two 

members of the GST overviewed in this section have 

particular potential towards application in wireless 

communications and cognitive radio. 

 

2.1 Grey Prediction Theory 

 

The Grey Model (GM) is a member of the Grey System 

Theory family that provides a tool for modeling discrete 
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series with only a few data points, as little as four in some 

cases [2]. The model‟s basis for forecasting lies in 

identifying an exponential pattern in the data.  The GM 

model is applied to systems with limited data availability 

and has been implemented in agriculture, earthquake 

prediction and stock market modeling. 

 The notation for grey model is GM(n,h), where n is the 

order of a pseudo differential equation of h variables.  The 

1
st
 order one variable grey model indicated by GM(1,1) is 

especially pertinent to forecasting and prediction. The grey 

differential equation represents discrete (non-continuous) 

time series.  A key assumption of this model is that the 

discrete data series is exponential or can be manipulated 

through some level of preprocessing into an exponential 

pattern. This exponential pattern realized between each 

element of the series provides the foundations for the grey 

model.  The model attempts to represent the causality 

between the different elements of the data set leading to a 

dynamic modeling of a small-sample of discrete data series. 

Refer to [3] for detailed equations.  

 

2.1.1 Review of Grey Prediction Theory in Wireless 

Communications 

Research of Grey System Theory is growing within the 

wireless communications domain where it has been used to 

predict Rayleigh fading mobile communications channels 

[4]. Rezai, et al. applied grey prediction techniques towards 

cellular handoff to achieve a significant decrease in handoff 

delay as well as using a smaller number of handoffs [5].  

Compared with traditional hysteresis handoff techniques, 

the grey prediction methods helped to limit both the mean 

number of handoffs and hand off delay.  Similarly, grey 

prediction models were used to predict the received signal 

strength indicator (RSSI) from two base stations [6].  The 

handoff decision algorithm combined the predicted RSSI, 

the actual received RSSI value and historical records of past 

RSSI values to make a decision.  Their simulation results 

indicate minimization of the number of handoffs performed 

as well as low calculation time.  

 

2.1.2 Grey Prediction for Cognitive Radio 

Mitola‟s original cognitive cycle introduced the use of 

prediction in his Plan phase [7]. Prediction has been 

explored in the context of forecasting the possible radio 

configurations [8] and radio resource availability [9]. The 

GM(1,1) model can estimate the future value or future trend 

of a time series. The goal of this use of prediction is to input 

these future values in place of an existing meter in a 

cognitive radio engine in order to elicit lower latency 

operations. 

 

 

 

 

2.2 Grey Relational Analysis 

 

The Grey Theory family includes GRA which is designed to 

provide a quantification of multidimensional distance 

between an observed data vector and a reference vector.  

This distance provides a direct correlation to similarity.  

When compared to a basic similarity function, such as 

Euclidian Distance, GRA incorporates a relational aspect 

where the measure of similarity is directly related to all the 

vectors in the library and not just on the attributes of one 

row of the library.  This relational aspect of the algorithm 

sets it apart from other methods designed to quantify 

similarity.  GRA can be used in similar fashion to clustering 

algorithms for determining pattern recognition and matching 

a signal to known references. Section 3 provides details on 

the GRA algorithm within an AMC context. 

 

2.2.1 Review of Grey Relational Analysis in Wireless 

Communications 

GRA‟s ability to identify similarities and assist in decision 

making has application towards always-best-connected 

(ABC) heterogeneous communications networks.  GRA was 

used to rank network alternatives to select the best medium 

based on tradeoffs between quality of service, handoff, and 

user needs [10]. Other research utilizing GRA for signal 

similarity matching includes a spectrum identification 

method for the UM71 signal used in railroad 

communication [11].  

 

2.2.2 Grey Relational Analysis for Cognitive Radio 

Case Based Reasoning (CBR) is proving to be a popular 

foundation for decision making and learning in cognitive 

radio [12]. Quantification of similarity lies at the core of 

CBR. Cognitive radio architectures using CBR match 

similarity between newly observed situations and past 

history of radio configurations and associated spectrum 

conditions. The final selection of new radio parameters are 

defined through optimization of the most similar past 

situations from the case library. The ultimate success of the 

cognitive engine is inherently tied to the strength of the 

similarity measures. 

 GRA presents an alternative to Euclidean distance to 

measure similarity between two vectors. Of particular 

interest is the relational aspect that GRA brings that 

incorporates the entire case history when quantifying 

similarity.  Typically, similarity measures quantify case by 

case where the information in one case has no bearing on 

another‟s similarity to the observed situation.  

 

2.3 Limitations of GST 

 

The GM algorithm works with only positive valued data 

therefore negative data such as dB must first be transposed 

into positive power ratios or to received signal strength 
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indicator (RSSI). Elbatsh points out that predictive filters 

such as Kalman filters and Grey Systems theory adapt 

rapidly to changes in continuous RSSI changes. However, 

they have difficulty in situations with short disconnects 

[13].   

 The primary limitations of GRA include data format, 

scaling, preprocessing requirements, choice of similarity 

algorithm, and developing custom weightings.  GRA will 

only work if all the elements in the reference vector are the 

same type, for example combinations of text and quantified 

values will not work without transposing the text into some 

numbered values.  Data preprocessing is required to scale all 

the values between 0 and 1.  Refer to [14] for discussion of 

several scaling methods. This helps GRA mitigate 

sensitivity to large magnitude differences between the 

smallest value and largest value in the vector.  

 Chinese and far eastern researchers dominate the 

literature in GST but it is slowly expanding its international 

base.  As indicated in [2], poor readability of many papers 

due to language barriers along with limited theoretical 

foundations contributes to a reluctance to investigate GST. 

 Table 1 summarizes the uses, pros, and cons of GST for 

cognitive radio and wireless communications. 

 

3.0 GREY RELATIONAL ANALYSIS BASED 

AUTOMATIC MODULATION CLASSIFICATION 

 

3.1 Background 

 

As the demand for spectrally efficient and intelligent 

communication systems such as software defined radio and 

cognitive radio grows, the automatic modulation 

classification (AMC) becomes an important task for 

recognizing the modulation format of the received signal in 

an intelligent receiver. AMC algorithms are mainly 

composed of two steps: signal preprocessing and 

classification. The classification algorithms are generally 

classified into either likelihood-based or feature-based [15]. 

The feature-based algorithms use features of a signal that 

are distinct for each modulation type and the pattern 

recognition or the decision theory-based algorithms are then 

used for classification [15-20]. 

 This GRA AMC method is a feature-based modulation 

classifier which employs GRA to identify the highest 

similarity against a library of reference signals. The signal is 

classified based on this similarity measure. This proposed 

algorithm is similar to the algorithm for electrocardiogram 

(ECG) heartbeat recognition using GRA classification 

whose results showed high accuracy and fast processing 

time [21]. Lin‟s method uses the wavelet transform to 

extract features from the ECG signal and then uses the 

GRA-based classifier to recognize match against cardiac 

arrhythmias. 

 

3.2 Method 

 

3.2.1 Feature Extraction 

The signal feature used in the proposed GRA-based  

AMC is an alpha profile (α-profile) because of its distinct 

pattern for each modulation type.  

 Majority of communication signals vary periodically 

with time due to the modulation, the multiplexing, and/or 

the sampling process. These signals may be modeled as 

cyclostationary signals. A signal x(t) is defined to be second 

order cyclostationary if its autocorrelation function Rx(t, τ) 

is periodic in time t for each time lag τ. The second order 

cyclostationarity of the signal can be analyzed in the 

frequency domain using the spectral correlation density 

(SCD) and the spectral coherence function (SCF) [22]. The 

SCD of a signal x(t) is defined as  
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where         is the local Fourier transform of x(t) and α is 

a cycle frequency or amount of shift in the spectra. The SCF 

of a signal x(t) is defined as  
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 The SCDs/SCFs are attractive features since they are 

highly distinct for different types of modulation with some 

limitations discussed in [16]. In order to reduce the amount 

of data used in classification, the highest value of SCF for a 

given α is used and defined as [16] 

 α profile  max
 

 C 
α      (3) 

 

3.2.2 Enhanced-GRA Classification  

This section describes the enhanced GRA classifier which 

utilizes the GRA algorithm presented in [21] together with 

normalization and weighting methodologies. Other 

variations of the GRA algorithm are also available [4].  

 First, the α-profile of each modulated signal with no 

noise is generated and converted to a data vector. The 

library of these α-profiles, called reference vectors, is used 

to compare with the α-profile of the received noisy signal, 

called an observed test sequence, for the classification. 

Figure 1 shows the α-profiles of Binary Phase-shift Keying 

Table 1 Summary of GST for Cognitive Radio 

Method CR Use Pros Cons 

GM Proactive 

decision 

making 

Requires few 

data points 

- Unstable under 

disconnects 

- Limited theoretical 

foundations 

GRA - Similarity 

Measure CBR 

- AMC 

 

Incorporates 

relational 

aspect 

- Requires data 

preprocessing 

- Sensitive to 

magnitude differences  
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(BSPK), Quadrature Phase-shift Keying (QPSK), 

Frequency-shift Keying (FSK) and Minimum-shift Keying 

(MSK) modulations.  

 The normalization and the weighting methodology are 

pre-processing techniques used to quantify the importance 

of each element in the α-profile based on its magnitude. 

This allows the distinguishable characteristics (peaks) of the 

α-profile to have more influence over the final decision. 

Maximum Value (MV) normalization, where each α-profile 

is normalized by its highest value, is used for this AMC. A 

weighting function, given in (4) and shown in Figure 2, 

increases an importance of the peaks by applying a weight 

that is directly related to the magnitude of the α-profile. The 

threshold value of 0.25 was selected in the weighting 

function since we observe that most of the unimportant 

elements of each α-profile had a magnituide under 0.25. 

     
 

 
                          (4) 

 Let the observed test sequence, test, consist of n 

sample points i(0), i  1, 2,…n as shown in (5). A library 

of reference vectors, comp, consist of K reference vectors 

where each vector is given as (k) = [1(k), 2(k), …, 

n(k)] for k = 1, 2, …, K as indicated in (6).  

                                               (5) 
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Each vector is normalized as  
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for k = 0, 1,…, K and i = 1, 2, …, n. 

 For each normalized vector (α-profile), the weighting 

vector is then calculated and multiplied with the 

corresponding normalized vector as shown in (8) and (9).  

                                 (8) 
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 The absolute value of the difference between the test 

sequence and the k
th

 reference vector is then calculated.  

                     (10) 

 The next step is to calculate quantification of rankings 

known as the Grey Relational Grade, as shown in (11)-(13), 

where the coefficient        . This coefficient is used to 

weaken the effect of max as it grows large. ED(k) is the 

Euclidian Distance between the test sequence and each 

reference vector as shown in (14).  
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(14) 

 The Grey Relational Grades, r(k), provide a 

quantification of similarity between the test vector and the 

library of reference signals.  The higher the relational grade, 

the higher the similarity and the closer the signal is in term 

of distance from the reference signal. A relational grade of 1 

corresponds to an exact match. Recall, that this similarity 

metric is a representation of distance away from the 

reference signal.  The power of the GRA is that it provides a 

multidimensional quantification of distance combined with 

a relational element encompassing all the signals in the 

reference library. 

 

3.2.3 Results 

Due to limitation in the α-profile where the higher-order 

QAM and higher-order PSK exhibit the same features as 

QPSK [22], four modulation types are considered: BPSK, 

QPSK, FSK, and MSK. The α-profiles shown in Figure 1 

are calculated with 100 α-points and a ratio of a carrier 

frequency to a sampling frequency (Fc/Fs) = 0.2. Note that 

the synchronization at the receiver is assumed to be perfect, 

 
Figure 1 α-profiles for BPSK, QPSK, FSK and MSK 
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i.e. the carrier frequency and the symbol rate of the received 

signal can be correctly obtained.  

The proposed enhanced GRA classifier outputs the 

modulation type after it compares the normalized and/or 

weighted α-profile of the noisy received signal with the 

normalized and/or weighted α-profiles of four noiseless 

modulated signals (reference vectors). The Monte Carlo 

simulation results for the proposed GRA-based AMC with  

weighting function are shown in Table 2 for different SNRs 

varying between -5 dB and 15dB. Figures 3 and 4 show the 

Probability of Correct detection (Pc) with various SNR (dB) 

with and without weighting function for all modulation 

formats. 

 
       Table 2 GRA-based AMC Confusion Matrix 

Tx 

Rx 

BPSK QPSK FSK MSK 

BPSK 1229 0 0 0 

QPSK 33 1200 0 22 

FSK 0 0 1178 118 

MSK 0 0 0 1220 

 

3.2.4 Discussion / Limitations 

We can see in Figures 3 and 4 that the results are promising 

especially for SNR above 0 dB. The weighting improves the 

results for Pc of BPSK, FSK, and MSK at lower SNR. 

However, Pc of QPSK was negatively affected. It is likely 

that when SNR is low, noise-induced peaks in the QPSK α-

profile of the received signal will make it appear to be that 

of a different modulation type. 

 As SNR decreases, the peaks of the α-profile of the 

received signal may decrease or change. Distinguishable 

peaks may still be noticeable, but the Euclidian distance 

between the observed profile and each reference profile will 

be large, and therefore a small difference in the noise can 

easily force the GRA to classify the signal incorrectly.  The 

first step in pre-processing should therefore be 

normalization in order to have both the reference profile and 

the observed profile on the same scale.  This allows a focus 

on the relative shape of the profile, and not only the 

magnitude. A weighting function increases an importance of 

the peaks by applying a weight that eliminates unimportant  

elements and maintains peaks of the α-profile. 

 The simulation results in Table 2 are comparable to 

those obtained in [16] when a signal carrier and bandwidth 

can be correctly obtained. The algorithm of Fehske, et al. 

uses the α-profile of signals with the artificial neural 

network for classification.  The proposed GRA-based AMC 

requires no training and no configuration of architecture and 

parameters as required in the neural network. However, 

additional preprocessing algorithms must be incorporated 

for cases when there is no prior knowledge of the signal or 

when there are offsets in carrier frequency and symbol rate 

which make the α-profile different from ones in the library 

of references especially peak locations.   

 

4. SUMMARY 

 

This paper has presented a brief overview of Grey Systems 

Theory focused on application to wireless communications 

and cognitive radio. The GM(1,1) model of time series 

prediction has potential towards aiding in proactive decision 
 

Figure 2 Weighting Function 
 

 
Figure 3  Probability of Correct Detection for BPSK and QPSK   

 
Figure 4  Probability of Correct Detection for FSK and MSK  
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making while CBR based engines can utilize GRA for 

similarity measures. A specific application of GRA towards 

AMC was also presented. 

The proposed AMC has shown promising classification 

performance in using the enhanced GRA algorithm to 

classify four modulation types based on the α-profiles.   

There are clear advantages to normalization and weighting. 

Future efforts will include investigating other normalization 

methods that can improve Pc at low SNR and investigating 

the effect of substituting different similarity metrics in place 

of Euclidian Distance in the GRA algorithm itself, creating 

a “Modified GRA”. 

 The numbers of modulation type in this paper are 

restricted due to the limitation of the α-profiles. Other signal 

features and their combinations will be investigated in order 

to classify more modulation types. The combination of 

several other signal features can be used with few additional 

computations in the GRA algorithm. Future efforts will also 

include integrating other pre-processing algorithms and/or 

signal features for a case when there are offsets in carrier 

frequency and symbol rate. 
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