
A Sub-Space Method to Detect Multiple Wireless
Microphone Signals in TV Band White Space
Dinesh Datla, Harpreet Dhillon, Jeong-O Jeong, Mike Benonis, Michael Buehrer and Jeffrey Reed

Wireless@Virginia Tech, Blacksburg, VA, USA
Email: {ddatla, harpreet.dhillon, jeongo9, mjb8h, buehrer, reedjh}@vt.edu

Abstract—Hurdles still remain in the realization of dynamic
spectrum access (DSA) systems due to the uncertainty associated
with spectrum sensing at extremely low signal to noise ratio
(SNR) conditions. One such challenge is to detect the presence
of wireless microphones (WMs) in the TV band. In this paper,
we propose a method for detecting the presence of multiple
narrow-band analog frequency-modulated signals that are gen-
erated by WMs. In addition, the algorithm can determine the
center frequencies of multiple signals. We use real WM signals
experimentally captured under low SNR conditions to verify the
detection performance of our algorithm.

I. I NTRODUCTION

In recent years, there has been significant research focus on
TV band devices (TVBDs) that use dynamic spectrum access
(DSA) technology. These devices are designed to operate
unlicensed in unused radio spectrum when primary users are
not operating. Because of the way that television stations are
allocated spectrum in the United States, the TV bands have
become the focus of FCC rule making [1] on TVBDs. TVBDs
will operate in the same core TV Bands that licensed WMs
operate in. Hence, future TVBDs are required to sense WM
and TV signals under extremely low SNR conditions to avoid
causing harmful interference to the licensed users.

WM signals are difficult to detect due to their unique
characteristics and also due to the FCC’s very demanding
detection requirements. RF power output on WM transmitters
ranges between 10 mW and 250 mW, though a common
figure for professional systems is 50 mW. Professional WM
systems operate in the high-band VHF and UHF TV bands.
Within these bands, WM systems may operate on any unused
frequency that is a multiple of 25 kHz. The vast majority of
WM systems use analog wide-band frequency-modulation to
improve reliability and audio quality. The maximum deviation
from the carrier frequency is set to±75 kHz by the FCC. This
means that the power output is spread over a relatively wide
range when the microphone sees a large input signal, making
detection more difficult. There are a few systems that use a
digital link to prevent signal interception, but these systems
represent a very small portion of the WMs in use today. The
FCC specified in Docket 08-260 [1] that TVBDs must be able
to detect a WM signal as weak as -114 dBm. In addition, since
a WM signal may operate anywhere within a TV channel
(or, in fact, on the border of two TV channels), the TVBD
must be able to search over a relatively wide bandwidth for a
WM signal that is narrow-band in comparison. Moreover, the
received signal strength will likely vary as a strong function of

time due to fading introduced by transmitter mobility, meaning
that a signal may be detected at some times and not at others.

Since TVBDs will be integrated into consumer electronics,
it is highly unlikely that they will have external antennas or
tight RF front-ends. This increases the possibility that spurious
signals will be received or generated by the RF front-end. The
end result is that the receiver and detection algorithm is likely
to see these spurious signals and potentially classify them
incorrectly as WM signals. This is undesirable as it may lead
the device to wrongly believe a free TV channel is occupied,
thereby reducing the TVBD spectrum utilization.

Several spectrum sensing algorithms have been proposed
in the literature. Energy detection is the simplest sensing
algorithm to implement but the least reliable and requires
knowledge of the noise power [2]. Matched filtering based
sensing requires complete knowledge of the transmitted sig-
nal, which is impractical in most cases. More sophisticated
methods such as cyclostationarity-based detection [3] and
eigen value-based detection [4] do not require the knowledge
of noise power and perform better than energy detection
under low signal-to-noise ratio (SNR) conditions too. The
co-variance sensing algorithm [5] performs signal detection
based on the co-variance of the received signal. While this
method is effective, sub-space methods have proven to be
more robust particularly since they are able to separate the
noise and signal sub-spaces under low SNR conditions too.
Yet another class of methods use the method of maximum
entropy. One such algorithm [6] assumes some knowledge of
the signal characteristics and required the use of a match filter.
In contrast, our proposed algorithm only requires knowledge
about the noise characteristics.

This paper presents an algorithm that can detect multiple
WM signals in a 6 MHz wide bandwidth in the spectrum.
In particular, the algorithm computes the correlation matrix
of received signal samples and singular-value decomposition
(SVD) of the correlation matrix to determine the number of
signals that are present. It then decomposes the space into
the signal sub-space and noise sub-space. The autocorrelation
of the signal is recovered from the signal sub-space and the
center frequencies of the multiple WM signals are determined
by Fourier analysis. We distinguish our work from previous
work [4], [7] on sub-space methods in two ways. First, we
extend previously proposed methods based on SVD to detect
multiple signals with the help of multiple thresholds on the test
statistics. We note that the multiple thresholds are typically
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Fig. 1. Histogram of background noise computed from measurementdata.

required when the noise is colored. Second, we use real
captured signals to verify the detection performance of the
algorithm. Third, we aimed at reducing the complexity of
existing methods for multi-antenna systems [5] by employing a
simple antenna selection scheme as against the more complex
approach of coherently combining the signals from the two
antennas. While simulation studies on the performance eval-
uation of sub-space methods under various SNR conditions
have been presented in the literature, this paper provides an
empirical verification of the proposed algorithm to assess its
real-world performance. The experimental data on spectrum
occupancy that has been used for the algorithm verification is
representative of harsh channel conditions with received power
ranging between -100 to -105 dBm.

II. M EASUREMENTCAMPAIGN AND NOISE

CHARACTERIZATION

For the purpose of noise characterization and algorithm
performance evaluation, different data sets were generated
containing unmodulated WM signals, modulated WM sig-
nals, and background noise respectively. The modulated and
unmodulated signal sets had a WM carrier at 8 MHz, and
were sampled at 33 MHz. The signal was bandpass-filtered
to simulate a 6 MHz television channel. The received power
level in these data sets was specified as being between -100
dBm and -105 dBm.

The various statistical properties of the background noise
are examined next. The histogram of the noise samples, shown
in Figure 1, appears to be a truncated Gaussian, although we
did not formally test the histogram for Gaussianity. With the
assumption that the noise is Gaussian, we can simplify the
complexity of the algorithm significantly. The histogram is
also observed to follow similar trends in different noise data
sets (NoiseData <1 : 2 >).

Figure 2 shows the variance of background noise computed
over different time instances from three different noise data
sets (NoiseData <1 : 3 >). The plot indicates that the noise
variance does not vary significantly as a function of time. A
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Fig. 2. Variance of background noise at different time instances.
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Fig. 3. Autocorrelation of band-limited background noise samples.

similar observation was made with the noise mean.
Figures 3 and 4 show the autocorrelation and power spectral

density (PSD) of the noise samples. The PSD clearly shows
that the noise was band-pass filtered prior to sampling. The
autocorrelation plot reflects this as well, showing correlation
up to approximately 15 samples. In addition, the noise cor-
relation properties do not vary significantly across the noise
data sets.

Figures 5 and 6 show the autocorrelation and PSD of the
data samples containing a modulated WM signal. As expected,
the autocorrelation differs significantly from Figure 3 in that
the correlation with signal present extends out far past 15
samples. It is this property that allows us to use a correlation-
based technique to determine whether a WM signal is present
in a given data set or not. The autocorrelation of the data
samples containing a silent WM signal resembles that in
Figure 5, with the exception that the correlation is lesser.

Based on the analysis presented in this section, we observe
that the noise is stationary with a near-Gaussian distribution,
but it is not white. Rather, the noise is band-limited (colored)
due to filtering and sampling in the receiver.
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Fig. 4. PSD of band-limited background noise.
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Fig. 5. Autocorrelation of loud (modulated) WM signal with colored noise.

III. SVD BASED WM SENSING ALGORITHM

The working of our proposed algorithm can be classified
into two main phases, viz., training phase and detection phase.
Main steps involved in these two phases are as follows:

Training Phase:

1) Characterize the noise by using the training data sets
(NoiseData) having no wireless microphone signal.

2) Compute the average noise correlation matrix from all
the training data sets.

3) Subtract this average noise correlation matrix from
the correlation matrix of eachNoiseData to get the
whitened noise correlation matrices.

4) Determine the thresholds of the test statistics from
the singular values of the whitened noise correlation
matrices.

Detection Phase:

1) Compute the correlation matrix of the received signal.
2) Whiten the noise by subtracting its correlation matrix

from the received signal correlation matrix.
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Fig. 6. PSD of modulated WM signal with colored noise.

3) Find the SVD of the resulting correlation matrix and
determine the number of signals present by comparing
the test statistics with the thresholds.

4) If the signals are present, decompose the space into
signal sub-space and noise sub-space.

5) Recover the autocorrelation of the signal from the signal
correlation matrix (signal sub-space).

6) Find the center frequencies by the Fourier analysis of
the signal autocorrelation.

The received signal samples can be modeled asx(n) =
s(n) + η(n). The correlation matrix of the received sam-
ples can be represented asRx = Rs + Rη, where Rx =
E

{
x(n) xH(n)

}
is the correlation matrix of the received

samples,Rs = E
{
s(n) sH(n)

}
is the correlation matrix of

the transmitted signal samples, andRη = E
{
η(n) ηH(n)

}

is the correlation matrix of the noise samples. Note that,sH

denotes the conjugate transpose of vectors and this notation
is applied for other matrices and vectors in this paper. In
the case when the noise is white and for a smoothing factor
L [4], Rη = σ2

η IL, where IL is an identity matrix of order
L. Rx is computed from the data set containing WM signal.
Rx is an L × L matrix, where we have usedL=500 for our
implementation. The value ofL was empirically determined
as a trade-off between complexity and performance.

A. Noise Whitening

Since the noise is correlated, the noise has to be whitened by
removing the correlation components in the noise. By doing
so, we confer with the theory of the SVD based spectrum
sensing algorithm [7] which assumes that the noise is white.
From the noise data sets (NoiseData <1 : 3 >), we can
compute an estimate of noise correlation matrix̂Rη by taking
the average of the correlation matrices of the three data sets.
The noise correlation matrix can then be used to cancel off the
noise correlation component in the received signal correlation
matrix, as given by

R̂s = Rx − R̂η = Rs + Rµ, (1)
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whereRµ is the correlation matrix of the residual noise.̂Rs

is the estimate of the correlation matrix of the WM signal
assuming that the correlation matrixRµ of the residual noise
is negligible compared toRs.

B. SVD and Test Statistic Threshold

The SVD method can be applied to the cleaned correlation
matrix of received signal̂Rs to obtain

R̂s = U S VH = [UsUµ]

[
Ss 0
0 Sµ

]
[VsVµ]H , (2)

whereSs and Sµ are diagonal matrices whose values corre-
spond to the singular values in the signal subspace and noise
subspace, respectively. The proposed algorithm uses the ratio
of the alternate singular values as the test statistic to determine
the number of WM signals present. It is straightforward to
show that each WM signal produces two non-zero singular
values during SVD of the received signal correlation matrix.
Thus, forNs WM signals,diag(Ss) will be [λ1, λ2, . . . λ2Ns

]
and diag(Sµ) will be [λ2Ns+1, λ2Ns+2, . . . λL], whereλ1 >
λ2 > . . . λL. If there is only one WM signal present,
diag(Ss) = [λ1, λ2] anddiag(Su) = [λ3, λ4 . . . λL].

If only white noise were present,λ2x−1/λ2x+1
∼= 1, where

x is an integer from 1 to(L− 2)/2. If Ns number of signals
were present,λ1/λ3 >> 1 . . . λ2Ns−1/λ2Ns+1 >> 1 and
λ2Ns+1/λ2Ns+3

∼= 1 . . . λL−3/λL−1
∼= 1.

As is the case in all the detection algorithms, we need
thresholds to make a decision about the presence of the WM
signals. The threshold values are determined by applying the
SVD to the whitened noise correlation matrices and finding
the ratios of the singular values, as given by:

λ1/λ3 = λτ1
, (3)

λ3/λ5 = λτ2
, (4)

. . .

λ9/λ11 = λτ5
. (5)

In the practical setup, we apply the above technique over
various noise realizations and try to find the distributions
of the singular value ratios. However, due to the limitations
in the amount of training data, we can not get the exact
distributions and set our thresholds to the maximum values of
the ratios found over all noise realizations (NoiseData). For
the algorithm implementation, it is assumed that there are no
more than five WM signals in the measurement data set, and
therefore there are five test statistics and five thresholds. The
decision to restrict the detection to five signals has been made
by empirically observing the performance of the algorithm
after setting it to detect larger number of signals. However,
the maximum number of WM signals detectable is an easily
adjustable variable.

C. Center Frequencies of WM Signals

After identifying the number of WM signals present, the
locations of the WM signals are determined by finding the
corresponding number of highest peaks from the PSD of
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Fig. 7. PSDs obtained from the cleaned-up autocorrelation function Rs.

the cleaned data. The PSD can be found by taking the
FFT of the first row of the correlation matrixRs, which
can be reconstructed from the SVD decomposition shown in
equation 2, as given by

Rs = Us Ss VH
s . (6)

Since the correlation matrixRs is reconstructed only from
the signal subspace, the resulting PSD obtained fromRs is
much cleaner than that obtained from correlation matrixRx

or evenR̂s. This makes determining the location of the WM
signals much easier and more robust. Note that, if there are
data from multiple receiver antennas, the results are chosen
from the antenna whose received signal samples infer the
highest number of signals.

IV. EMPIRICAL RESULTS

The proposed algorithm has been verified and tested on
real over-the-air data. The empirical thresholds that were
used for our detection are as follows:λτ1

= 1.8741, λτ2
=

1.4505, λτ3
= 1.5743, λτ4

= 1.4806 and λτ5
= 1.3152.

Figure 7 shows the PSD obtained from the cleaned-up auto-
correlation functionRs for a data set containing WM signal.

The results have shown that multiple signals can be de-
tected. Independently of the proposed algorithm, the measure-
ment data was also analyzed by visual inspection. In visual
inspection, some of the data sets revealed that there are more
(nearly twice) number of signals than the ones detected by
the proposed algorithm. One possibility is that there could
be intermodulation products present in the received signal
that share the same subspace as the WM signals itself, in
which case the SVD algorithm may not observe any singular
values corresponding to the intermodulation products. Hence,
the intermodulation products cannot be distinguished from the
WM signals in the signal subspace of the SVD.

V. CONCLUSION AND FUTURE DIRECTION

Detecting WM signals in poor SNR conditions using test
equipment is a difficult task. Doing the same task with a
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consumer-grade receiver over a wide band will prove to be
even more challenging. This paper has shown how the use
of correlation matrices and SVD can detect the presence of
extremely weak WM signals and determine what frequencies
they operate on.

The current version of the proposed algorithm faces one
drawback. It is not capable of examining each signal individ-
ually to determine whether it exhibits the characteristics of a
frequency-modulated analog audio signal. The next step in this
process is to incorporate this information into the algorithm,
as well as the capability to calculate potential IM3 products
and compare the results to the detected signals to reduce
the possibility of false positives (especially over multiple TV
channels). More measurement campaigns have to be conducted
under different wireless environments in order to obtain more
statistically accurate calculations of the test statistic thresholds.
One other important research direction would be to evaluate
the complexity and performance of the proposed algorithm on
software radio platforms including small form factor handsets.
We also intend to perform more detailed analysis of the
proposed algorithm in order to determine the complexity -
performance tradeoffs.
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